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Physics Department, University of Bucharest, Bucharest, PO Box 76-54, Romania
Received 14 May 1999, in final form 1 July 1991

Abstract. A natural way to describe the diamond structure using reference frames having
four axes is presented. The symmetry group O] of the diamond structure has natural
representations in the mathematical spaces that are used. Geometric quantities, operators
and fields having physical meaning and an obvious Oj-invariant form are taken into con-
sideration. Their expressions in the usual description are very intricate and difficult to use.

1. Introduction

Generally, systems having three axes of coordinates are used to describe the points of
space. In the case of certain physical systems, some of these systems of coordinates are
more adequate to use than others.

Within a crystal there are privileged points (the equilibrium positions of the atoms
of the crystal} and for each of them there are priviledged directions (for example, the
directions corresponding to the nearest atoms}, and hence a system whose origin is
the equilibrium position of an atom of the crystal and whose axes pass through the
equilibrium positions of three nearest atoms is a privileged system of coordinates.

Such a system can be associated in a natural way to each atom in a crystal having the
structure of a Bravais lattice, but in the case of a crystal having the diamond structure
any atom has four nearest atoms and the problem to choose three axes from the four
equivalent ones cannot be solved in a natural way. The singte natural solution seems to
be to keep all four axes.

We must also keep the systems corresponding to all atoms of the crystal (we cannot
choose some of them in a natural way). The term ‘reference frame’ will be used for such
a system having four axes. The purpose of this paper is to present a description for a
crystal having the diamond structure by using the class of all reference frames.

A way to associate ‘coordinates’ to each point of space with respect to a fixed
reference frame is presented. The geometric and physical quantities or properties of the
crystal that can be formulated in terms of space positions correspond to mathematical
objects in the space of the coordinates. We indicate such mathematical objects that can
be assoctated to the crystal by using a reference frame in a way that does not depend
on the chosen reference frame. In mathematical terms, the changes of coordinates
corresponding to the changes of the reference frames form a group (we prove that it is
isomorphic to the well known space group Of), and a mathematial object that we can
consider in the space of coordinates can have geometric or physical meaning only if it is
invariant under this group of transformations.
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We shall prove that this description leads us to develop a mathematical formalism
that allows us to consider mathematical objects having an obvious O] symmetry and
which are useful in modelling some geometric and physical properties. Their expressions
in the usual description are very intricate. In this description the case of the diamond
structure becomes almost as simple as the case of a simple cubic lattice for certain
problems.

The idea of using additional coordinates has been considered before, for example,
by Janner and Janssen {1, 2] and Nebola et af [3, 4] in connection with the notion of
superspace groups (higher-dimensional space groups). Janner and Janssen consider a
periodically distorted crystal regarded as a perfect crystal with a deviation that itself has
symmetry properties. In this case they show that a space group with dimension higher
than 3 is obtained if Euclidean symmetries and the symmetries due to the deviation are
considered together. Particular examples of four-dimensional superspace groups with
applications were considered by Nebola et al.

The way we use the additional coordinate is very different. We use four axes but
we use neither four-dimensional space groups nor representations of groups in four-
dimensional spaces. We only consider the space group Ol its corresponding point group,
itssubgroup of three-dimensional translations, and representationsin three-dimensionat
spaces Or representations as a group of permutations of a discrete set S (which is not a
linear space). The set S (which is a subset of R*) is identified with a subset of a three-
dimensional space P (isomorphic to R*) and it describes the points of the three-dimen-
sional diamond structure. We do not use four-dimensional Bravais lattices. We use an
additional axis but not an additional dimension. The fourth axis is only used to obtain
an adequate description for the elements of a three-dimensional space (the space P)
whose elements are subsets of the four-dimensional space R* (in mathematical terms it
is a factor space obtained by factoring R* by one of its subspaces).

2, The mathematical spaces P and §

We shall use the notation x € M for ‘the element x belongs to the set M’ and M, C M,
for ‘M, is a subset of M,". If f: M, — M, and g: M,— M, are two mappings, then we
denote by g ©f: M, — M; or only by g ©f the mapping (g © f)(x) = g(f(x)) for any
x&E M, If h:My— M, is another mapping, then we remark that

(ho (g0 ))x) = h((g o f)(x)) = h(g(f(x))) = (h o g)(f(x)) = ((h o g) 0 [)(x)

thatis, k0 (g © f) = (k © g) © fand we denote this mapping by A © g of, For any bijec-
tive mapping f: M, — M, we denote its inverse by f~': M,— M|, that is f~'(y) = x,
where x € M, is the unique element having the property f(x) = .

In the usual description of the space (with the aid of a system of three axes of
coordinates) any point of space corresponds to an ordered set of three real numbers
{x. y. 2). If we denote by R the set of all real numbers, by R? the set

{x.y.2)|[xER,yER, z € R}

of all ordered sets of three real numbers (x, y, 2}, and by @ the set of all points of the
physical space, then any reference system defines a bijection

x:®— R x(A)=(x.y,2)
which associates to each point A € P its coordinates {x, y, z).
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If we fix a point O € P then we can associate an oriented segment OA toeach point
A € P in abijective way. Thus, the set @ of all points of the space can be identified with
the space

%, = {OA|AEP}

of all oriented segments having O as origin. In the space %, we have the usual addition
OA + OB of the oriented segments (the parallelogram rule), the multiplication by a
real number a - OZA, and the scalar product OA - O = []C_)'g%- | OB - cos 8 (where
|OA |iis the length of OA and 6 is the angle between OA and OB ). Their properties are
wellknown (in mathematical terms, 6yisa Euclideanspace). We remark that OX-OB =
OB . OA and |GA|? = OA : GA. The usual distance between two points of the space
A, B € ® denoted by | AB| is given by [AB| = [OB - OAJ.
If we denote by i, j, k three elements of €, which satisfy

el = Jill = I &ll = 1 ij=jk=k-i=0 (2.1}

then any element OAe %, can be written in a unique way in the form

OA=x-i+y-j+z-k (2.2)

where x, y, z are real numbers (in mathematical terms i, f., k is an orthonormal basis of
the space ). They determine a bijection

9:%—> R’ @(OA) = (x,,2).
In addition, if (0&,) = (x;, y1, 21), (OA,) = (¥, ,, 2,). then

@(6:%1 + mz) = (.xl + X2, ¥V + V2. 2y + 22)
= (1, Y, 20) + (2, ¥ 22) = (OA)) + (OA,)

and

~*

pla- C)_4"3\1) = (ax), ay;, ez;) = a - (x5, ¥, 21) = a - (OA))

(that is, @ is a linear isomorphism) and also

(TA]-C)_Az=xl-x2+y1-y2+zt-zz (2.3)
—) 7
1AAS] = [(x; — %2 + (31 = y2)* + (21 — 2212, (2.4)
We consider the oriented segments (see figure 1)
egg=-i—j—k a=i-jtk
0 J 2 ) (2.5)
e=—i+j+k ex=i+j—~k

and we denote by Ay, A;, A, A; the corresponding points, that is, ey= 6?0,
e,=0A,, e,=0A,, =032, We remark that | A& = A& = | AGks| =
AR =1AAs] = A&;| and  [OAf =[OA,| = |04, =I|07£3[|, that is
AgA AL s aregular tetrahedron and O is jts centre.
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Figure 1. The system of oriented segments ¢, |,
€4, €; is used to obtain a new description for the
points of space,

For any xg, xy, X2, X3 € R we have xgep + x ey + 123 + Xie; € %y, and if we want to
determine its coordinates with respect to the basis ¢, f, £ we write

Xpr€t+xre t Xy txyrey=x-ity jtz-k
and use (2.5). We get
r=—xpg—x+x+ i
y=—Xxp+x —x3+ X3 (2.6)
z==xp+ X, + X — X3

Conversely, each elementx-{ + y - j + z - k € %, can be written as a linear combination
of ey, €, &5, e, by using the system of equation (2.6). This can be done in an infinite
number of ways

ity jrzek=hey+{(y+2z)/2+Ale,+[(x+2)/2+Ales+[(x+y)/2+A])e; (2.7)
where A € R. Generally,
X+ X181+ Xa85 + X383 = Xp€) + X1€1 + Xhey + Xiey
if and only if there is A € R such that
Xp=xg+A xp=x;+4 X3 =Xy + A X3=1x;+ A.
Thus, each element OA € %, correspondstoaset
{{xg+ A, x5+ A, x+ A, x3+ )| ER}).

Such a set is well determined by one of its elements and we denote by [xg, x|, X1, X3} the
set having (x,, x,, X3, Xx3) as one of its elements

g, x xnml={(x+ A,y +Ax+ i x+)|LER)L
Let P be the set whose elements are all these sets

P = {[x0, X\, X2, %3] | (o, %1, X3, %3) € R*}
The space P has the structure of a vector space given by
[x0, X1, X2, X3] + [ Yo, Y15 Y2, ¥3] = [Xo + Yoo X + y1s Xz + Y2, x5 + y3) (2.8)
@ [Xg, X1, Xq0 %3] = [@x0, @y, axy, axs).

These operations are well defined since if we add an arbitrary representative
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(xo+ A, X+ Ay, X3+ A5, x3+ A) of [xg,xy,x;3,%;] and an arbitrary representative
(Yo + A2, 1+ Ao, y2 + Az, y3 + A3) of [¥o, 1, ¥2, ys] we get a representative
t+wththhntynth+tntnth+hntyp+i+4)
of [xp + Yo, X) + Y15 X2 + ¥a, X3 + ¥5], and if we multiply a real number a to a rep-
resentative (x¢+ A, x; + A, x5 + A, x5+ A} of [xq, x;, X3, X;] We get a representative
(axq + al, ax, + ad, ax, + ad, ax; + ad) of [axy, ax,, ax,, ax,]. ]
In mathematical terms, P is the factor space R*/{(A, A, A, A)|A € R} of R* cor-
rresponding to its vector subspace {(1, 4, A, 1)|A € R}
The system ey, e, e, e defines a bijection
—
‘P%U"’P (OA) = [x(}»xhxz,x3]
where OA = Xxgep + _Iﬁ e) + Xye; + X3¢;. In addition, we remark that if w((ﬁ) =
[¥0, X1, X2, %3] and Y(OB) = [yp, y1. 2, 3] then
Ww(OA + OB) = [ + yo, x; + y1. %2 + 2. %3 + 3]

= [xﬂﬁxlaxb x3] + [y(}a Y1» y29y3} = '#’(CTA) + "P((jB)

and

y(a- (:_)73!.) = [axo, ax,, axy, axs] = a -« [x, x), 22, x3] = a+ 1!’(615*)

that is, ¥ is a linear isomorphism.
The correspondence n: P— R® between the two descriptions

€

wx
P n' R?

e

is n = @ © Y~ given by (2.6), where

N([Xg, X1 Xz, X3]) = (=xp = X7 + X3+ X3, —Xg + X, — X3+ X3, —Xg + X + X3 — X3).
(2.9)

Its inverse, given by (2.7), is 7' : R*— P, where
17 xy, 2) = [0.(y + 2)/2, (x + 2)/2, (x + )/2] (2.10)

{we have used the representative corresponding to A = 0). The mapping 7 is a linear
isomorphism. It allows us to bring the mathematical structures we usually consider on

R®to P. For w(cﬂ) X, X1, X2, X3] and w(O_];) = [y¢, Y1, 2. ¥3] the expression of the
scalar product OA . OB in terms of P can be obtained from (2.3) by using n; thus

OA - OB = 3(xqyo + X1y1 + X292 + x3¥3) — (Xoy1 + Xoys + Xoys + X1
+ xlh + X1y + XaYo + XoY1 + Xa¥s + XaYo + Xayy + X3)2)

=3 Exlyl Exzy]

i#Ef

rew
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We also denote

3
{fxp, 1, X2, 3] [ ya. ¥1u 2. 33]b = 3 E XY — Exiyj' (2.11)

i=0 i®j

A mapping f: R — Piscalled differentiable if the mapping # © f1R — R¥isdifferentiabie
and we put

Lnt(Snon) 2.12)

To each mapping g: R*— R> we associate the mappingn™'0gon:P— P, i.e,
P n='ogoy P
In ]

R?’ g R3

In particular, from the representation [5] of the complete tetrahedral group T, as linear
isomorphisms of R*:

&x, ¥y, 7) = {x,y,2)
Oa(x, y, 2) = (x, -y, —z)
0a(x, ¥, 2) = (=x,y, —2)
Onx,y,2) = (—x,~y,z2
Oulx, ¥, 2) = (~x.2.—y)
ol (x,y, z) = (—x, —z.y)
Osy(x, y, 2) = (=2, =y, x)
03\ (x.y,2) = (2, -y, ~x)
Oar{x, . 2) =y, —x, =2}
o (. y. 2) = (=y.x, —2)
Pefx.y,2) = (~y. =X, 2)
Prix, y,2) = (¥, x,2)

pulx,y. 2y = (x,—z,-y)
Pulx,y.z) = (x,z,¥)
Pulx,y,2) = (-z.y, =x)
pilx,y, 2} = (z,y,%)
Oa:(x. ¥, 2) = (2.2, ))
Oine(x, ¥, 2) = (¥, 2, %)
Sugz(x,y, 2)=(—z,~x,y)
Sinalx. ¥, 2) = (=p. 2, —x)
Braalx, ¥, 2) = (2. —x, —y)
8inilx y 2}y = (~y, ~2, %)
Oripe(X. ¥, 2) = (=2, x, —y)
Save(x. ¥, 2) = (¥, —2, ~x)

(2.13)

we can obtain a representation of T, as linear isomorphisms of P (we denote by the same
symbol the corresponding isomorphisms):

&lxg, X1, X3, 3] = [0, Xy, X2, %3] Py:Lxgs X100 Xa0 Xa] = (%14 X, X2, 3]

Gaelxp, X 14 X2, X3] = [x14 X, X3, X2 pyz'[xt)-xl-xbx?)] = [xy. %), X3, 49
62y{x0~xlsx2=x3] = [xa, X3, Xg, X1} QaxlXps X1s X2 Xa] = [X2. X1, Xy, X3)
Balxy, x1, X2, X3] = [x3, X2, X1, X0 £zilxo, X1, X2, %3] = o, X5, X2, 1]
O, Xps X2, X3) =[x, X2, X, X1}

03 [xgs Xy, X3, %3] = [x2, X3, %1, Xg]

a3xyz[x(l’ Xy, X2, X3] = {xo, x5, ), x2]

55;{1-2[)59»«‘71?-’52»13] = (g X3, X3.,.0,] (2.14)

U4y[xaa Xy, X2, X3] = [%15 X2, X3, Xq 5315-5[150, Xy, Xz, X3} = [X2. X, x5, 1)
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03 [%0, X10 X2, X3) = [%3, Xg, X1, %))
Oaz[Xg, X1, X2, 3] = [%2, X0, X3, 1]
Oz [Xo X1 X2, %3] = [y, X3, Xp, %3]
ny[xm X, X3, X3] = [X3. X}, X2, Xo}

Px;[xo» X1 X720 xJ] = [XU, X2, X1, -x3]

B35l x0, X1, X2, X3] = [X3, X4, Xp, Xa]
‘53@:‘{)50, Xy, Xp, X3] = [X3, Xg, X3, X3]
533?}3[—‘0; X1, X3, %3] =[x, Xa, X2, Xo]

63ffz{x0a X1, X2, x3] = [xl » X2, X0, x3]

63—.\’]}72{x01 X12 42, x3] = [x27 Xp» X1, X3].

9285

We can consider

Ty = {As: P— P, Aglxg, X1, X2s X3] = [Xaoys Xotas Xot2)s Xotz ]| 0 € Za}
where

Z,=1{0:{0,1,2,3}—={0, 1, 2, 3}| o'is a bijective mapping}

is the group of all permutations of the set {0, 1, 2, 3}. Thus, we have a linear rep-
resentation of T, in P.

In addition, we remark that any element of T, can be obtained by composing the
elements A, = 63}, Ay = P,z Ay = p,,. thatis

Td = {Aflo A,‘z ... OA,‘ﬂln = N,[ll,llz, Ve ,Iln E{l, 2,3}}
where

Ajlxg, Xy, X2, x3] =[xy, X20 X350 X1
Aglxg, xy, xz0 23] =[x, X1, X3, %] (2.15)
A:S[les X, X2, x3] = [xh Xp, X3, x?]

andN=1{0,1,2,3,4,...}
We denote by

Z={... ,-4,-3,-2,-1,0,1,2,3,4,...}

the set of all integer numbers and by {01} the set having two elements: 0 and 1. We
consider the set

8= ‘{(ng, fy, Ao, n3) S Z4|nu + R+ Ky + 3 E{O;l}} (2.16)

whose elements are all the ordered sets containing four integer numbers with the
property that n, + #; + 1, + nyiseither O or 1. To each element (rg, 1y, 1, 73) E S we
associate the element

(g, Ay, Ba, i3] =g+ A, m + A, m + A, m+ AD)|AER}EP.

We remark that if (ng, 1y, #5. n5) € S then (ng, ny, 72, #13) is the unique element of §
which belongs to [rg, 1y, #y, 73], Indeed, from (ng+ A, n; + A, ny+ A, ny+ A) € Swe
get A€EZ and ng+A+m+A+m+A+n+A€{0;1}. Since my+n +n+
ns & {0; 1} it follows that & = (.
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Figure 2. The orthonormal basis i, j, k is used to Figure 3. The diamond structure can be obtained
deseribe the face-centred cubic lattice. from a face-centred cubic lattice by adding new
points.
Thus, the set S can be identified with the subset
g, vy s 3]y, 11y, mp, Y ESIC P {(2.17)

of P. For any (ng, i, 1z, n13) € § we have

Aglrg, A g, 13} = (Ro Rolys Hoys Raz) € S

that is, the set § is an invariant subset of P with respect to the representation of T4 in P.
The restriction A, of A, to § C P represents a bijection from S to §.
The complete tetrahedral group Ty is isomorphic to the group of transformations

{Ag:8— 8, Ay(ng. my, 3, 3} = (Mo(0y» Pot1y» Ry nam)|0' € %}

{it will also be denoted by T,).
In mathematical terms, sve have defined a faithful representation by permutations
[6] of T4 in the set S.

3. The space group O]

We consider a face-centred cubic lattice and we use the orthonormal basis ¢, j, k shown
in figure 2 to describe it (that is, the isomorphism ¢ : €;— R?). The diamond structure
can be obtained [5, 7, 8] by adding a basis in the Wigner-Seitz cell consisting of two
identical atoms: one at point (—1, —1, —1) and one at point (0, 0, 0) in the case of the
Wigner-Seitzcell centred atpoint (—1, —1, ~1). Thus, the new structure points (0, 0, 0),
(0,2,2),(2,0,2) and (2, 2, 0) are added within the considered cube (figure 3).

We denote by R the set of all points of the diamond structure; obviously & C ?. A
mapping v: P — @ is called an jsometry if | AB]| = | v (A)»(B)| for any A, B € P. We
say that @t is invariant under the isometry »: P — P f y(A)ER forany A ER. We
shall describe the symmetry group of the diamond structure which consists of all the
isometries of % that leave ® invariant.
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Wedenotet = (=1, ~1, =1),4, = (0,2,2), = (2,0,2), t = (2,2, 0),

100 -1 0 .0
e={0 1 0 i=( 0 -1 o0l
00 1 0 0 -1

For any matrix
&y Xy o3
¥=|dy on on
3 Gy 4y

whose elements are real numbers and for any a = (a,, 4,, a;) € R® we denote by {&|a}
the mapping {&|a}:R*— R3, {a{a}{(x, y, z) = (apx + apy + apz +ay, e x + amy +
&z + @y, X + Ay + Az + a;). We remark that the transformations (2.13) are of
this kind.

The group of transformations

T= {{Elﬂlﬁ + Ryl + n3t3}ln1 = Z, Ny € Z, H3 = Z}

is the group of all the translations that leave invariant the diamond structure [5]. In
addition, the diamond structure is also left invariant [5] under the transformations
{|0} € T, and under the transformation {ijt}.

Any isometry of @ which leaves invariant the diamond structure can be obtained by
compasing these transformations [S].

If we denote

{aja}oT = {{a|a} o {e|nt; + nats + mats}|n €Z, n €2, ny € 7}

(the set of all the transformatijons that can be obtained by composing {&{a} and a
transformation belonging to T), then O] is the union [5]:

Ol= |J {elG}oTu U {icalr}orT (3.1)
{e{0tETy [x[0}ETY
of all the sets {a|0}o T and {ioa|t}o T, where {io a|t}={i|t} 0{x|0} and
{fxlo} = Td'
‘We shall use the isomorphism # to obtain a representation of Of in P. The trans-
formations

{e|t}:RP > R? {eltHx,y, 2y = (e, y +2,2 %+ 2)

{e|n}:R*— R? {ein}x,y.2)=(x +2,y,2+2) (3.2)
{e]} R — R? {e|lt}x,y,2)=(x+ 2,y + 2, 2)

frhRP— R e, y, 2)=(-x—-1,-y-1,-z-1)

correspond to the transformations (we denote them by the same symbols)
{£|t1}:P—> P ‘
{e |63 x0.x1,%0,23] =[0, =xg+x,+ 2, =xg+ 2o+ 1, —xg+ 23+ 1] =[x —1,x, + 1,x5, %3]

{Elfz}:P—)P
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{eltoHxo,x1,%2. 23] =0, —xp +x1+ 1, =X+ Xa+2, =X + x5+ 1] =[x — Lx, x5+ 1,33 (3.3)
{elty}: PP
{e] X0, x1,22,%3) = [0, —xp+x, + 1, —Xo+ X2+ 1, —xg+ x5+ 2] =[xg— 1,x,,%2,%3 + 1]
{i|t}:P— P
{!'kT}[-’fUaxthwxﬂ:[O»xﬁ_x:—1=xo‘x2—1,-’50“-’53_1}=[“x0+1a_xh"—’2a"x3]-
We denote the transformation {i| t}: P— P by Ay and we remark that
{g|h}=A30A00 A0
{elt}= A 0A0A;0A)0A; 0N T A (3.4)
{elts} = A OA;0 A0 A;0A 070N
and hence
O] ={A, O A,O...OA |REN, il iy .., i, €{0,1,2,3}}

In particular, O} is isomorphic to the subgroup of the group of all bijective trans-
formations of § generated by the transformations Ag, Ay, Az, A;:§— 8§,

Aglng, iy, ny, ma) = (—ng + 1, —ny, =y, —ns)

Ag(no, 1y, g, m3) = (ng, Nz, 13, 1Y) (3.5)
Aalng, ny, g, n3) = (my, 1y, 13, 1)

Aslng, my, g, 13) = (1, g, M2, 1),

A mathematical object is Of-invariant if and only if it is invariant under the trans-
formations Ay, A, Ay and Aj;,

4. Intrinsic distance and minimal paths on the diamond structure

let N= {0,1,2,3,...} be the set of all natural numbers. We denote k!=
1x2x3x%x.,..XkforanykEN,k=2,and0! =1, 1! = 1. The mappings
d:SxS—N

3

d(n,n') = 2 a; ‘”:| = |y = mp| + |ny — mi| + [y = 3| + |”3 - "51
=0

(4.1)

NSExS—N

n,’>rz, n;<m
(Jra = 75| )|y = mi D2 = m3] (|3 = 3]

where n = (ng, 1y, 1y, 13) € S and n’ = (nf, ni, nj, n3) € S, are Of-invariant mappings,
that is, d(g(n), g{n')) = d(n, n’), N(g(n), g(n")) = N(n, n’) for any g: § — § belonging
to O]. Indeed, for any j&€{0,1,2,3} we have d(A(n),A(n’))=d(n,n') and
N(A(n), A{n")) = N(n,n").

(2 w-m] [ 2 a-m) “2)

Nin.n'y=
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Figure 4. The diamond structure can be
generated by starting from the point O and
constructing alternately representatives of
ey, €1, €2, €3 and &, €|, &, & having as
origins each of the last obtained points.

To find the geometric meaning of the mappings & and N we shall prove that there is
a family of natural bijections v;: R — S such that 3, © 7' :§ — § belongs to Of for any
y; and y;. Let i, f, k be a fixed orthonormal basis, ey, €, €;, €3 the vectors defined
according to (2.5) and &y = —ey, €, = —€,, €2 = —e€,, €3 = —¢€5.

The diamond structure can be generated as follows (figure 4). We construct rep-
resentatives of the vectors ¢, e, 1, e; having the point O as origin; then by choosing
each of the endpoints thus obtained as origins we construct representatives of the vectors
&y, €1, €3, €;. We continue by constructing representatives of the vectors eg, e, €2, €3
having as origins the endpoints of each of the last obtained segments, then similarly for
&, €1, €2, €3, and so on. The points that can be obtained in this way (some of them
coincide) form the diamond structure (the set 3%).

Each point belonging to R can be described by a finite sequence

18,88, . . €, (4.3)

where ;; € {0, 1,2, 3}, ¢/ = ¢, for k odd and ef, = &, for k even (the ‘bar symbols’ and
the ‘non-bar symbols’ alternate inside them and each of them starts by a ‘non-bar
symbol’). Two such sequences describe the same point if and only if one of them can be
obtained from the other one by using operations such as:

e GERE T G
(permutation of two neighbouring ‘non-bar’ components),
N ST N N 1T

(permutation of two neighbouring ‘bar’ components),
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or
7P A 7 P
(elimination of a sequence of the form ¢, or ¢£;), and
€. CEEE . .
or

...e,—ek...-é...e,-eje,ek.,.

(insertion of a sequence of the form &g, or ¢;¢;). For example, e;épe,, €,8pe3, €360€2€2¢1,
e:18)e4€,¢|, etc, describe the point B (see figure 4).

We can divide the set of all sequences (4.3) into classes by putting together in the
same class all the sequences that describe the same point. The set & can be identified as
the set of all these classes,

We associate to each sequence (4.3) the element (ng, 1|, na, #;) € Z*, where n, is the
number of appearances of e, inside it minus the number of appearances of ¢, for any
i€ {0,1,2,3}. For example, (—1. 1,0, 1) corresponds to each of the sequences which
describe the point B.

We remark that we associate the same element to all the sequences which describe
the same point and the associated elements (1, n;, 13, #1;) belong to §. Thus, we have
defined a bijection

YR -8 (4.4

This bijection depends on the choice of the point O € & and the indexation by 0, 1, 2,
3 of its four nearest points. We obtain in a similar way a bijection for any element
(D, Dy, Dy, D3, D3) € R such that Dy, D), D,, D; are the four nearest points of D by
setting e, = ﬁl%, foranyi€{0,1,2,3}.

In particular, if we pass from the bijection corresponding to (O, Aq, A}, Ay, Aj) to
one corresponding to (O, Ay, Az, Az, A}, (O, Ag. Ap, As, Az), (O, AL Ag, Ag, Ag) or
(Aq, O, Al, A}, A}) ¥see figure 4) then the coordinates of an arbitrary point change
according to the transformations A |, A,, Ay, Aggiven by (3.5), respectively. In addition,
we can pass to any other choice by composing these transformations.

In mathematical terms, the set of all the bijections y: R —- S defined above can be
considered as an atlas of global maps for # whose changes of map belong to the
representation of O] in S. It allows us to add to the set & the Oj-invariant structure of §
by using such a map, independent of the chosen map.

Let y,: R — § and y;: % —-$ be two maps. We define two mappings

d:R X RN d(A, A) = d(,(A), ¥,(A")) (4.5)
N:R X RN N(A, A") = N((A), p(A)). (4.6)
Since 1y, © Y7 : S — S belongs to Of and d, N are Oj-invariant, it foliows that
d(yi(A), wi(A")) = d((y: © 9)(¥i(A)), (2 © wi)(¥i(A"))
= d(y(A), Yo(A"))

and similarly for N. This means that the definitionsof d, N: % X 9 — N are independent
of the chosen description .
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We shall prove that the numbers d{A, A’) and N(A, A’) represent the minimum
number of elementary segments (segments having two nearest structure points as end-
points) that one must traverse to reach the point A’ on the diamond structure starting
from A (we call it the intrinsic distance between A and A') and respectively the number
of paths having this length that connect these two points. Since 4 and N are
Of-invariant we can use the particular description in which (A} = (0,0,0,0). To
describe the point A we can use a sequence (4.3) having the property that for any
i€{0,1,2,3} at most one of ¢, & appears inside it. Evidently, it contains
|rg| + |my| + | 12| 4 | 73] = d(n, o) components, where n = (g, 1y, 75, 15) = Y(A) and
0=(0,0,0,0) = y(A").

The number m of ‘bar’ components in such a sequence is the sum of the negative
components of (ng, n,, 13, 13) taken to opposite sign and that of ‘non-bar’ components
is the sum p of the positive components of (ng, ny, 715, n3). We can pass from one such
sequence to another by separate permutations of the ‘bar’ components and of the ‘non-
bar” components. But not all (—m)! - p! sequences thus obtained are distinct. For each
sequence there are {ny}! » |n,|! « ln,|! + |#3]! permutations that leave it unchanged.

The mappingsd: R X R— Nand N: R x R — N are difficult to describe classically.

The point (x, y, z) € Z* is 2 point of the diamond structure if and only if there exists
A € R such that

(A, (y+2)/2+0,x+2)2+A,x+p2+1)e?? 4.7
and

A+(y+2)/24+42+x+2)2+A+@x+y)2+A€{0;1} (4.8)

It follows that A € Z and x, y, z are either all even or all odd. In the case x, y, z even,
(4.8) becomes x + y + z + 44 = 0 and hence (x, y, z) corresponds to

((~x—y—z2}/4,(—x+y+2)/4,x—y+2)/4,x+y—z}/H) ES.
Inthe case x, y, zodd we getx + y + z + 44 = 1 and hence (x, y, z) corresponds to
(—x—y—z+D/4,(—x+y+z+ D)4, x—y+z+1)/4,(x+y—-z+1)/4)ES.
The intrinsic distance
3
dRXR—>N d(A,A')=%|n;—n{|
where (rg, 11, Ry, 13) = Y(A) and (ng, ny, n3, n3) = Y(A'), has the following expression
in the classical description
dl(x,y,2), ", ¥y, 2 =8|-x—y—z+x" +y + 2|+ |-x+y+z+x -y - 2|
+lx—ytz-—x'+y - |+ |x+y—z-x -y +7|) (4.9a)
for x, x' both even and x, x* both odd
(@, y,2), (x" ¥y 2 =4(-x—y—~z+x"+y +z' -1
Fl=x+y+z+x—y -z -1|+|x—y+z-x'+y -2 —1]
+lx+y—z—x" -y +z' —1)) (4.95)
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for x even and x’ odd
d((x,y. 2} (" y, 2 =4(—~x —y—z+ 142" +y + 2|
'%|“X'+y'¥2'+1'+x'-‘y'-z'|+]x-y-+z.+l._xr4_y1__zw

Flx+y—z4+1=x'—y +2'|) (4.9¢)

forx odd and x' even.

In a crystal having the structure of diamond we can assume that two atoms A and A’
are bound to each other by means of other atoms along all minimal paths connecting
them. The ‘intensity’ of this bond depends on the numbers d(A, A’) and N(A, A").

In a fixed description g : % — §, the points corresponding to

Sy = {(ng, ny, na, m3) € S|y + ny + ny + ny = 13

form a face-centred cubic lattice. The corresponding intrinsic distance is
3
d,:S, X §,— N din,n"y =142, |n; — n!|
i=0 ’

and the number of minimal paths is given by the same formula as in the case of the
diamond structure.

5. A class of O]-invariant operators

We denote by C the field of complex numbers and for any z = x + iy € C we denote by
Z = x — iy its conjugate and by {z| = (2£)'” its absolute value, Let z, z;, 23, 23, . . . be
asequence of complex numbers. The series 27, z;is called absolutely convergent if the
series 27 | z;| is convergent. Let 7z : N — N be a bijective mapping. It is known [9] that
if the series 27_ z; is absolutely convergent then the series 27_; z,; is also absolutely
convergent and they have the same sum.

Letm :N— 8§, m;:N— Sbe two bijective mappings. We can obtain such a bijection,
for example, by associating 0 ta (0,0,0,0) €5, 1, 2, 3, 4 to the four elements n E S
which satisfy the condition d(#, 0) =1, the numbers 5, 6, . . . , 16 to the twelve elements
n € S which satisfy the condition d(n,0) = 2, etc. Let u:S— C be a mapping. If
2 oul(,(f)) is absolutely convergent then we say [9] that Z,<5u(n) is absolutely
summable and its sum is

x

2 u(n) = 2 ulm(j). (5.1)

rES j=u

Sincen7! © mry: N — Nisabijectionand 2%, u(,(f)) is absolutely convergent it follows
that g u(ar, (77" © my)(j))). that is 27, u(ra(f)), is absolutely convergent and

E Wl (f)) = E u(l(i))-

Thus, the definition of - ¢ u(n) does not depend on the bijection 7, : N — § we use to
define it.
We consider the space

I}8) = [H.’S-—* C

> |u(n)|? is absolutely summable} (5.2)
nes
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of all the mappings u:S— C having the property that 2 ¢ |u(n) [2 is absofutely summ-
able. The space /2(S) has the structure of a Hilbert space [10] given by

Uy + 1 S—C () + wx)(n) = wy(n) + uy(n)
a-u:S—C (a- u)(n) = a(u(n)) (5.3)

(uy, uz) = 2 u(n) - ux(n).
nes
We obtain a unitary linear representation [11] of Of in /*(S) by associating to each
g:5— S, g € O], the transformation

T, 1%(8)— I3(S) (Ty(1))(n) = u((g™ " Nn)). (5.4)
Indeed,

[To T (u))](m) = (T ()7 Hm)] = f(82 D87 N
= u(2: © &) ()] = [Ty 00,()](7)
forany# & Sand

(Ty(wy), To(12)) = Es [To())](n) [T, () W)

= 2 wl(g™)] - wll@ )]

nes

= 2 wr{n) « up(n) = (uy, 1)
RES

forany g € O], u,, u, € I*(5).

To give a physical interpretation, we consider the case of an electron lying inside of
a crystal having the structure of diamond. We assume that the only possible positions of
the electron are in the proximity of an atom of the crystal. Let !} be the wavefunction
corresponding to the following case: the electron is in the proximity of the atomn € §.
The general wavefunction is a superposition

2 u(n) - |n)

HESF
and it is square-integrable if and only if u € {*(S).
We consider the operator
AHS)— 1X(S) (Au)(my = X o(d(n, n'}) - u(n') (5.5)
nes
for any mapping v: N — R such that the sum exists and Au € [(S) for any u € I%(5).
The operators thus defined are Oj-invariant, thatis, A = T;' 0 4 © T for any g € O],
Indeed,
(A4 0 TYN(n) = [A(T@)n) = 2 o[dn, )] - [Tyw)](n")

wES

= 2 ofd(n,n)] - ulg™(n)]

nes

= 2 v[d(g ' (n). g7 (n" )] - ulg™'(n")]

nes
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= 2 old(g™(r), )] - u(r') = (Aw)fg™(m)]
= [T(Au)](n) = {(Tg © A)(u)i(n)
foranyg€ O], ucl¥S)andn € S.

The operator A corresponding to v is a Hermitian operator if and only if

3 (2 oldonn)]- ) -
= 3 (2 ofdn, )y

RES “mES

for any u,, u, € I%(5).
The four nearest points of the point n = (ng, 1, 12, n3) € S are (figure 5)

n® = (ny + &(n), ny, ny, n3) n® = (ng, ny, ny + €(n), n3) 5.6)
n' = (g, ny + &(n), ny, my) n* = (my, ny, ny, 1y + €(n))
where

6(n) = (—1ytmtnzem, 5.7)

Let v:N—R be the mapping v(0)=—4, v(l)=1, v(j)=0 for j>1 and
Ay I(S)— 1%(8),
3

(Agu)(n) = ~du(n) + > u(n'y = > u(n’y — du(n) (5.8)

n.dnni=1 j=u
the corresponding operator, I & = k. k|, k3, &3] € P satisfies
sin(ko + ky ~ ky — ks)sin(ky — &y + ko — k) sin(kg — k) = ky + &5) =0 5.9
then the mapping #,:S— C, u,(n) = exp(i(k, n)} is an eigenfunction (it belongs to an
extension of the space /($)) of the operator A, corresponding to the eigenvalue
Ek = 4[_1 + COS(kU + k] - kz - k3) COS(}’{Q - k] + kz it ks)
X COS(kg - k; - k2 + k3)] (510)
Indeed,
3 3
komy =32 konj= 2 Ky =

(3k, -2 k,,,,) -n;
j=0 mEy j=0 m#}
and the equation A,u, = E, + uy is equivalent to
explie(m)(3ky — ky — ky — k3)] + explie(m)(—ky + 3k, — &y — K3}
+ explie(n){ —kq ~ ki + 3k, — k3)]
+explie(n)(—ko ~— k| — k; + 3k3)] = E + 4.
For E, € R we get
cos(3ky — k) — ky — k3) + cos(—ky + 3k, — ky — ka)
+ cos(—ky — k; + 3ky — k3) + cos(—ky—k, — ky + 3ky) = E, + 4
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0

n! Figure 5. The four nearest points of the
n point nare v®, 2!, 1%, 2.

and
sin(3ky — ky — kp ~ k3) + sin(—ky + 3k, — ko — k3)

+ sin{—ky — k) + 3ky — ka) + sin(~ky— &k, — ky + 34;) =0
which are equivalent to (5.10) and (5.9).

In the case of a Bravais lattice one considers [12] the space of Jacobi matrices /2(Z°),
which is defined similarly to /*(S), and the operator A, [3(Z%) — {3(Z?),

(Agdim)= 2% [u(m’) —u(m)] = —6u(m) + 2 a(m’)
m ez, me2’,
| —mis =1 lm'—m|s=1
where |m' — m|, = Z]_; |m/ — m;|. It is called the discrete Laplacian. We remark that
it corresponds to the operator (5.8) considered in the case of the diamond structure.

6. A class of O] -invariant scalar fields

A mapping f:P— C is Tginvariant if and only if flxg, x, X2 x3] = flxXsop Xanys
Xy Xarzy) for any o € 2. If f: P— C is Ty-invariant and if 2 ¢ f(e(n)}(x — n)) is
absolutely summable for any x € P (this occurs, for example, if there is r € (0, %)
such that fixg, xq, x5, x3] = 0 for any x = [x. X}, X2, x3] € P, satisfying the condition
{(x, x) > %), then the mapping V:P— C, V(x) = Z,<5f(&(n)(x — n)) is Ol-invariant.
Indeed, for anyj € {1, 2, 3} we get

V(Aj(x)) = %Sf(f(”)(ﬁj(x) - ”)) = %sf(s(*’\f(”))(/\f(x) - A;‘(")))
= %Sf(f\,(s(n)(x —n))) = %sf(s(n)(x - n)) = V(x).

We have also

V(Ag(x)) = §Sf(e<n)(Ao(x) —n))
= 2 F(=(Aom))(Agx) — Ag(n)))

neSs

=2 f(=e(n)(=x + n)) = V(x).

rneSs
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7. Conclusioens

A difficult problem may become a simpler one if an adequate description is used. The
presented description seems to be useful in this sense. New O] spaces such as § x P,
P x P,etc,and new O]-invariant mathematical objects useful in modelling some physical
aspects can be obtained by starting from the O] spaces and Oj-invariant objects con-
sidered above. Such developments are in progress and they will be the subject of another
articie.
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