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Diamond structure in a natural description 

N Cotfas 
Physics Department. University of Bucharest, Bucharest, PO Box 76-54, Romania 

Received 14 May 1990, in final form 1 July 1591 

Abstract. A natural way to describe the diamond structure using reference frames having 
four axes is presented. The symmetry group 0; of the diamond structure has natural 
representations in the mathematical spaces that are used. Geometric quantities, operators 
and fields having physical meaning and an obvious 0:-invariant form are taken into con- 
sideration. Their expressions in the usual description are very intricate and difficult to use. 

1. Introduction 

Generally, systems having three axes of coordinates are used to describe the points of 
space. In the case of certain physical systems. some of these systems of coordinates are 
more adequate to use than others. 

Within a crystal there are privileged points (the equilibrium positions of the atoms 
of the crystal) and for each of them there are priviledged directions (for example, the 
directions corresponding to the nearest atoms), and hence a system whose origin is 
the equilibrium position of an atom of the crystal and whose axes pass through the 
equilibrium positions of three nearest atoms is a privileged system of coordinates. 

Such a system can be associated in a natural way to each atom in a crystal having the 
structure of a Bravais lattice, but in the case of a crystal having the diamond structure 
any atom has four nearest atoms and the problem to choose three axes from the four 
equivalent ones cannot be solved in a natural way. The single natural solution seems to 
be to keep all four axes. 

We must also keep the systems corresponding to all atoms of the crystal (we cannot 
choose some of them in a natural way). The term ‘reference frame’ will be used for such 
a system having four axes. The purpose of this paper is to present a description for a 
crystal having the diamond structure by using the class of all reference frames. 

A way to associate ‘coordinates’ to each point of space with respect to a k e d  
reference frame is presented. The geometric and physical quantitiesor properties of the 
crystal that can be formulated in terms of space positions correspond to mathematical 
objects in the space of the coordinates. We indicate such mathematical objects that can 
be associated to the crystal by using a reference frame in a way that does not depend 
on the chosen reference frame. In mathematical terms, the changes of coordinates 
corresponding to the changes of the reference frames form a group (we prove that it is 
isomorphic to the well known space group O;), and a mathematial object that we can 
consider in the space of coordinates can have geometric or physical meaning only if it is 
invariant under this group of transformations. 
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We shall prove that this description leads us to develop a mathematical formalism 
that allows us to consider mathematical objects having an obvious 0; symmetry and 
which are useful in modelling some geometric and physical properties. Their expressions 
in the usual description are very intricate. In this description the case of the diamond 
structure becomes almost as simple as the case of a simple cubic lattice for certain 
problems. 

The idea of using additional coordinates has been considered before, for example, 
by Janner and Janssen [ l ,  21 and Nebola et a1 [3,4] in connection with the notion of 
superspace groups (higher-dimensional space groups). Janner and Janssen consider a 
periodically distorted crystal regarded as a perfect crystal with a deviation that itself has 
symmetry properties. In this case they show that a space group with dimension higher 
than 3 is obtained if Euclidean symmetries and the symmetries due to the deviation are 
considered together. Particular examples of four-dimensional superspace groups with 
applications were considered by Nebola et al. 

The way we use the additional coordinate is very different. We use four axes but 
we use neither four-dimensional space groups nor representations of groups in four- 
dimensional spaces. We onlyconsiderthe spacegroup 0;. itscorresponding pointgroup, 
its subgroupofthree-dimensional translations, and representations in three-dimensional 
spaces or representations as a group of permutations of a discrete set S (which is not a 
linear space). The set S (which is a subset of R') is identified with a subset of a three- 
dimensional space P (isomorphic to R3) and it describes the points of the three-dimen- 
sional diamond structure. We do  not use four-dimensional Bravais lattices. We use an 
additional axis but not an additional dimension. The fourth axis is only used to obtain 
an adequate description for the elements of a three-dimensional space (the space P) 
whose elements are subsets of the four-dimensional space R'(in mathematical terms it 
is a factor space obtained by factoring R' by one of its subspaces). 

2. The mathematical spaces P and S 

We shall use the notation x E M for 'the element x belongs to the set M' and M I  C Mz 
for ' M I  is a subset of Mi. I f f :M, + M2 and g :M2+ M, are two mappings, then we 
denote by g Of: MI  + M 3  or only by g O f  the mapping (g of&) = g(f(x)) for any 
x E M , .  If h :  M3- M4 is another mapping. then we remark that 

(h 0 (g of))(x) = h((g o m ) )  = h ( g ( f ( x ) ) )  = (h  O g)(f(x)) = 0 g) 0f)(x)  
that is, h 0 (g 0 f) = (h  0 g) o fand  we denote this mapping by h 0 g of. For any bijec- 
tive mappingf:M,-,M2 we denote its inverse by f - ' :M2+Mlr  that isf-'(y) =x ,  
wherex E M ,  is the unique element having the propertyf(x) = y .  

In the usual description of the space (with the aid of a system of three axes of 
coordinates) any point of space corresponds to an ordered set of three real numbers 
(x. y ,  2 ) .  If we denote by R the set of all real numbers, by R3 the set 

{ ( x , y , z ) l x E R , y E  R , Z E R ]  

of all ordered sets of three real numbers ( x ,  y ,  2). and by 9 the set of all points of the 
physical space, then any reference system defines a bijection 

x:P+R3 X(A) = ( x . y . 2 )  

which associates to each point A E 9 its coordinates ( x , y ,  z )  
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If we fix a point 0 E 9’ then we can associate an oriented segment a to each point 
A E 9’ in a bijective way. Thus, the set 9’ of all points of the space can be identified with 
the space 

c & , , = { ~ ~ A I A E ~ ’ P )  

of all oriented segments having 0 as origin. In the space we have the usual addition 
03 + a of the oriented segments (the parallelogram rule), the multiplication by a 
real number a .  Ox, and the scalar product 02. = I[ - Ilsll. cos 8 (where 
I IGl / i s  the length o f a  and 6 is the angle between and d). Their properties are 
weJknown (inm~hematicalterms,%oisaEuclideanspace). We remarkthat O f .  = 
OB .m and IIOA112 = O A .  07. The usual distance between two points of the space 
A, B E 9’ denoted by Ila;ifll is given by I[s\fll = 113 - all. 

If we denote by i ,  j ,  k three elements of %,, which satisfy 

llill = llill = llkll = 1 i . j = j . k = k . i = O  (2.1) 

$A = x . i + y - j  + z .  k 

then any element $A E % a  can be written in a unique way in the form 

(2.2) 
where x ,  y ,  z are real numbers (in mathematical terms i, j ,  k is an orthonormal basis of 
the space go). They determine a bijection 

rp:ceo+R3 d @ A )  = (x,Y,z). 
Inaddition, if q(mi) = (x i ryI ,  fJ. rp(m2) = (x2.y2,zJ, then 

 AI + $AA,) = (XI + ~ 2 , ~ i  + ~ 2 ,  zi + 22) 

= ( X I , Y I , Z I )  + (xz9y2,z2) = d 8 A 1 )  + dCA2)  
and 

~ ( 0  . S A i )  = ( a i .  ~ Y I ,  021) = a .  (xi. YI,  21) = a .  P ( ~ A J  
(that is, rp is a linear isomorphism) and also 

3 ~ ~ .  SA, = X I  - x 2  +yl  .yz + zl -z2  (2.3) 

(2.4) 
+ 

lIAiA211= [(XI - + (yi - ~ 2 ) ~  + (21 - z2)’Ii0. 
Weconsider the oriented segments (see figure 1) 

en = -i - j - k 

e, = -i + j + k 

e2 = i - j + k 

e 3 = i + j - k  

AoA,A2A, is a regular tetrahedron and 0 is its centre. 
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I 

Figure 1. The system of oriented segments en. e,,  
e, is used lo obtain a new description lor the 

pointsof space. 

For any X O ,  xi, x2, x3 E Iw we havexgo + xlel + x2e2 + x3e3 E 8,. and if we want to 
determine its coordinates with respect to the basis i, j ,  k we write 

xo.eo + x ,  .e, + x 2 - e 2  + x 3 * e 3  = x .  i + y j + z .k 

and use (2 .5) .  We get 

x = -x@ - x ,  + x2 + x3 

y = -xu + XI - x2  + X )  

2 = -xo + X I  + x2 - x3. 

Conversely, each element x .  i + y . j + L . k E %o can be written as a linear combination 
of e,, e,, e*, e; by using the system of equation (2.6). This can be done in an infinite 
number of ways 

x * i + y - j + z - k = I e u +  [( y + z ) / 2 + I ] e ,  + [ ( x +  r ) / 2 + I ] e 2 +  [ ( x + y ) / 2  +Ale, (2.7) 
where I E R. Generally, 

xoeu+xIel +x2e2 +x;e3=x~eo+x;et + xie2 +x;e, 

if and only if there is I E Iw such that 

x; = X@ + I x l = x , + I  x i  = x2 + I x;  = x3 + h. 
~~ ~ 

Thus, each element 03 E x0 corresponds to a set 

{ ( x u + h , x ,  + I , x 2 + h , x 3 + A ) l I E R } .  
Such a set is well determined by one of its elements and we denote by [xo, xlr x 2 ,  x s ]  the 
set having (xu, x , ,  x 2 ,  x 3 )  as one of its elements 

[ X O , X I , X ~ , X , ] =  { ( X O  + L , X I  + I , x 2  + A , X )  + h ) l h E  88). 

P =  ~ [ X 0 , X I . X * r X ; 1 1 ~ x o , ~ , . ~ 2 , X 3 ) E R 4 ~ .  

Let P be the set whose elements are all these sets 

The space P has the structure of a vector space given by 

[ x O ~  x2. x31 + [YO?).t,Y2,Y31 = IxO + YO,xl + Y 1 3 x 2  + Y 2 , x 3  + y3l 
(2.8) 

a . I x o , x l , x 2 , x d  = [ ( I X O , Q X ~ , M ~ ~ ~ .  

These operations are well defined since if we add an arbitrary representative 
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(XO + AI, x1 + A I ,  x 2  + Al, x 3  + A,) of [ x o , x I , x 2 , x 3 ]  and an arbitrary representative 
( Y O  + LYI + LYZ + L Y ~  + h) Of[yO,y1,y~,y31 weget arepresentative 

( x o + ~ o + ~ i + ~ ~ x i + ~ i + ~ 1 + ~ , x z + ~ 2 + ~ i + ~ , ~ 3 + ~ 3 + ~ 1 + ~ )  

of [xo + yo, x1 + y , ,  x2 + yz, x3 + y 3 ] ,  and if we multiply a real number a to a rep- 
resentative (xo + A, x1 + A ,  x2 + A, x 3  + A) of [xo, xl, x2,  x 3 ]  we get a representative 
( a x 0  + aA, axI + aA, ax2 + aA, ax3 + aA) of [axo, ar,, ax2, ax3] .  

In mathematical terms, P is the factor space R'/{(A, A ,  A ,  A)lA E R}  of R4 cor- 
.responding toitsvectorsubspace{(A,A,A,A)lA E R}. 

The system eo, e , ,  e2,  e3 defines a bijection 

I#:%o-+P W($AA) = b o .  XI, xz,  x3l 

where OA = xoeo + x el + x2ez + x3e3 In addition, we remark that if W(03) = 
- 

[ io ,xl ,x~,x31 and Vi(& = [ Y O . Y I , Y , , Y ~ ~  then 

W ( ~ A + ~ ) = [ X O + Y O , ~ ~ + Y , , ~ Z + Y Z , ~ ~ + Y , ~  

= [ x o , x i 3 x z , x ~ l  + [ Y O , Y I , Y ~ . Y ~ ~  F V(@AA) + W ( 3 )  
and 

--f + y ( a . O A )  = [axo ,ax l ,ax2 ,ax3]  = a . [ x 0 , x , , x 2 , x 3 ] = a . ~ ( O A )  

that is, W is a linear isomorphism. 
The correspondence q :  P+ R3 between the two descriptions 

P x\ r + R3 

is v = q~ o W-' given by (2.6),  where 

q ( [ x o , x ~ , x 2 , x ~ ] ) = ( - x o - x 1  + x 2 + x 3 ,  - x o + x , - x 2 + x 3 ,  -xo+x1 + x * - x 3 ) .  

(2.9) 

(2.10) 

Its inverse, given by (2.7). is q-' : R3+ P,  where 

v - k  Y ,  2) = [O. (Y + 4 /2 ,  (x + z)/2, (x + YID1 
(we have used the representative corresponding to A = 0). The mapping q is a linear 
isomorphism. It allows us to bring the mathematical structures we usually consider on 
R3 to P .  For W ( a )  = x o ,  xl, x 2 ,  x 3 ]  and ~ ( s )  = [ yo ,  y , , y 2 ,  y 3 ]  the expression of the 
scalar product 02 * 0 4. in terms of P can be obtained from (2.3) by using q ;  thus 

3 A .  Gh = 3(xoYO + ~ I Y I  + ~ Z Y Z  + X 3 Y d  - @OYI + XOYZ + x0Y3 + XIYO 

+ XlYZ + xIy3 + x 9 0  + x2yl + xZy3 + x3yO + x3Yl + x3y2) 

3 

= 3 x x i y i - ~ x i y j .  
i = O  i#j 
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We also denote 
3 

(2.11) 

A mappingf: R -+ Piscalled differentiable if the mapping q 0 f :  W - W3 is differentiable 
and we put 

(2.12) 

Toeachmappingg:R3-+[W'weassociate themappingq- logo  q : P - b P , i . e ,  
l o S o l  P n -  P 

1 9  L '1 
R3& WJ 

(2.13) 



(2.15) 

andN = {0,1 ,2 ,3 ,4 , .  . .). 
We denote by 

H = {. . . , -4, -3. -2, - L O ,  1 ,2 ,3 ,4 , .  . . )  

the set of all integer numbers and by {0;1) the set having two elements: 0 and 1. We 
consider the set 

S = {(no. n l ,  nz,n,) E Z41n0 + n I  + n2 + n3 ~ { 0 ; 1 } }  (2.16) 

whose elements are all the ordered sets containing four integer numbers with the 
propertythatn,+n, + n2+n3iseitherOor1.Toeachelement(no,n,,n,,n3)ESwe 
associate the element 

[no, n,,  It2. n3] = {(no + A, n l  + A, n2 + A, n3 + A)lA E 88) E P. 

We remark that if (no, n , ,  n,, n3) E S then (no, n , ,  n2 ,  n,) is the unique element of S 
which belongs to [no, n , ,  n2, n3] .  Indeed, from (no + A, n ,  + A, n2 + A, n3 + A )  E S we 
get A E H and n, + A + n, + A + nz + A + n3 + A E { O ;  1). Since no + n l  + n2 + 
n3 E {O ;  1) it follows that A = 0. 



Figure 2. The orihonormd basis o 1 .  k IS used to 
dcwnbe thc face-centred cubic latiice 

Figure 3. The diamond slruclux can be obtained 
from a lam-ccnircd cubic laitice by 3 d d m ~  new 
W,"ls. 

(2.17) 

that is, the set S is an invariant subset of P with respect to the representation of Td in P. 
The restriction A,,, of A. to S C P represents a bijection from S to S .  

The complete tetrahedral group Td is isomorphic to the group of transformations 

IA2,:S-*S,A,(n,.n1,nt,n,)= ( n , ( o ) , n ~ i i , n q r ) . n ~ 3 i ) I u E ~ i }  

(it will also be denoted by T,,). 

[6] of T d  in the set S .  
In mathematical terms, we have defined a faithful representation by permutations 

3. The space group 0; 

We consider a face-centred cubic lattice and we use the orthonormal basis i, j ,  k shown 
in figure 2 to describe it  (that is, the isomorphism q :Ce0+ R3). The diamond structure 
can be obtained [5,7, S] by adding a basis in the Wigner-Seitz cell consisting of two 
identical atoms: one at point (-1, -1, -1) and one at point (O,O, 0) in the case of the 
Wigner-Seitzcellcentredat point (-1, - 1, - 1). Thus, the new structure points(0.0,O). 
(0,2, 2 ) ,  (2,0,2) and (2,2,0) are added within the considered cube (figure 3). 

We denote by 91 the set of all points of the diamond structure: obviously % c 9. A 
mapping U :9 -+ 9 is called an isometry if 11a11= 11 v'(A)v(B)II for any A, B E 9. We 
say that 91 is invariant under the isometry v : 9 +  ?p if v(A)  E 91 for any A E %~ We 
shall describe the symmetry group of the diamond structure which consists of all the 
isometries of 9 that leave R invariant. 
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Wedenotez = ( - 1 ,  -1, - l ) , t ,  = (0,2,2), t2= ( 2 , 0 , 2 ) , t 3 =  ( 2 , 2 , 0 ) ,  

1 0 0  -1 0 .o 
E = k  1 0) i = (  -1  Oj. 

0 0 1  0 -1 

For any matrix 

a12 ay13 

a =  a22 @23) 

a31  a33 

whose elements are real numbers and for any a = (al. a?, a3) E R3 we denote by {ala) 
the mapping {ala}:R3+ Iw3, {a /a } (x ,y ,  z) = ((Y,IX + ~ I Z Y  + a132 + 01. a z ~ x  + ~ Z Z Y  + 
anz + a,, a3,x + a32y + aj3z + a3).  We remark that the transformations (2.13) are of 
this kind. 

The group of transformations 

T =  {{Eln1tl f f lzfz  + f l 3 t 3 } l f l l  E z, f l 2  E z, a3 E m) 
is the group of all the translations that leave invariant the diamond structure [5 ] .  In 
addition, the diamond structure is also left invariant [5] under the transformations 
{alO} E Td and under the transformation {iiz}. 

Any isometry of 9 which leaves invariant the diamond structure can be obtained by 
composing these transformations [ 5 ] .  

If we denote 

{nja)oT={{a~a}o{Eln,r ,  + n * r , + n 3 r 3 } l n , E H , n 2 E m , n 3 E H }  

(the set of all the transformations that can be obtained by composing {a la}  and a 
transformation belonging to T ) ,  then 0; is the union [ 5 ] :  

(3.1) 

of all the sets {culO}OT and { i O a l r ] O T ,  where {iOaIz}={ilr}O{a10} and 
{.lo} E T +  

We shall use the isomorphism q to obtain a representation of 0; in P. The trans- 
formations 

t l }  : 1w3 + ~3 {E Id (X ,  Y ,  2 )  = ( x .  Y + 2 ,  z + 2) 

{ E ~ ~ } : ~ 3 - t  1w3 

{ i J T ) : w - + R 3  { i ~ z } ( x , y , 2 ) = ( - x - l , - y - l , - z - l )  

{cl r,} : P - t  P 
{e It,}[xo,x,,x2,x3J=[0, -x,+x, +2, -xo+xz+ 1, -xo+x3+ 11 = [xo- l , x ,  + l,x*,J 

{clr2}:P+ P 

I E i t Z } ( X , Y . Z )  = (x + 2 , Y , Z  + 2) 

{ ~ l t ~ } : R ~ - , 8 8 ~  { E l f & , Y , Z ) = ( x + 2 , Y  + 2 , z )  

correspond to the transformations (we denote them by the same symbols) 

(3.2) 
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{ F / t z } [ X o , X l  ,Xz,X3] =[O, -XofXl+  l,-Xo+X2+2,-Xo+X,f ~ ] = [ X O -  1,XirX2+ 1 ,X3] 
(3.3) 

{€ \13} : P+P 
( € I t 3 } [ X 0 , X , , X 2 , X 3 ]  = [O,-xo+x, t 1, -xo+xz+ 1, -xo+x3+ 21 =[xu- 1 ,X,,XzrX3+ 11 

{ i / T ] [ ~ , , ~ , , x , , X 3 ] = [ 0 , ~ - X l -  l ,~o -~z - l ,xu -X3- l ]= [ -Xu+ l r -X I , -Xz , -X , l .  

{ i l T ] : p +  P 

We denote the transformation {il r } : P - t  P by A0 and we remark that 

(3.4) 

In particular, O', is isomorphic to the subgroup of the group of all bijective trans- 
formations of Sgenerated by the transformations Ao, A,,  Al. A,: S+ S, 

Ao(no, nl, nz7 n3)  = (-no + 1, -nl ,  -b -n3) 

&(no. nl, n2, nd = (no. n2, n3. 

A:(no, RI, n2, n3) = (no, nl. n3, nz) 

A&. n l .  nz. n3) = (nl, nu. "2.n3). 

(3.5) 

A mathematical object is 01-invariant if and only if it is invariant under the trans- 
formations A,,. A I, A2 and A3, 

4. Intrinsic distance and minimal paths on the diamond structure 

Let N = (0, 1,2.3,. . .} be the set of all natural numbers. We denote k! = 
1 x 2 x 3 x . . , x k foranyk E N ,  k >  2, ando! = 1, l! = 1.The mappings 

d : S X S + N  

d ( n , n ' ) =  2 j n i - n : I = l n u - n ; i t  I n , - n ; l t l n , - n ; [ + l n ~ - n ; l  
(4.1) 3 

1=0 

N S x S - N  

[ c ( n l -  n i ) ] !  . [ ";en, c (n, - (4.2) 
n;>n, N(n. n ' )  = ...... , , ,, , . , , , 

( In0 - nbI!)(ln, - nil!)(ln2 - nil!)(ln3 - nil!) 
where n = (no. n , ,  n2. n3) E Sand  n' = (n;,  n ; ,  n i ,  n;) E S, are 0;-invariant mappings, 
that is, d(g(n),g(n')) = d(n,n'),  N(g(n),g(n')) = N(n,n')foranyg:S-+Sbelonging 
to 0;. Indeed, for any j E {O ,1,2,3} we have d(A,(n),  Aj(n')) = d(n, n ' )  and 
N(A,(n), A,(n')) = W ,  n ' ) .  
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Figure 4. The diamond structure can be 
generated by starting from the point 0 and 
constructing alternately representatives of 
eo, e , ,  ea, e, and e%, e , .  8>. F, having as 
origins each of the last obrained points. 

To find the geometric meaning of the mappings d and N we shall prove that there is 
a family of natural bijections ly; : 3 + S such that vi 0 v;’ : S -+ S belongs to 0; for any 
vi and vj .  Let i, j ,  k be a fixed orthonormal basis, e,, e l ,  e?, e3 the vectors defined 
according to (2.5) and Fo = -eo, P ,  = -el, 

The diamond structure can be generated as follows (figure 4). We construct rep- 
resentatives of the vectors e,, e , ,  e,, e3 having the point 0 as origin; then by choosing 
eachoftheendpoints thusobtainedasoriginsweconstruct representativesofthe vectors 
Fo, PI ,  F2, F3. We continue by constructing representatives of the vectors e,, e , ,  e?, e ,  
having as origins the endpoints of each of the last obtained segments, then similarly for 
Po, tl, F?, F3, and so on. The points that can be obtained in this way (some of them 
coincide) form the diamond structure (the set 3). 

= -e?, F3 = -e3.  

Each point belonging to 3 can be described by a finite sequence 

ei,Fi2ej3F,4 . . . e:, (4.3) 

where ij E (0, 1.2,3}, e:, = e;, for k odd and e:, = ti, for k even (the ‘bar symbols’ and 
the ‘non-bar symbols’ alternate inside them and each of them starts by a ‘non-bar 
symbol’). Two such sequences describe the same point if and only if one of them can be 
obtained from the other one by usingoperations such as: 

, . . e;+?h.. . + .  , . e@;.  . . 

(permutation of two neighbouring ‘non-bar’ components), 

, . , .F;elZk. . . + . . . FhelF,. . , 

(permutation of two neighbouring ‘bar’ components), 
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, . . eiF,,e,Zh. . . -+ . . . e;& . . . 
or 

. . . F,erZreh. . . -+ . . . Fiek. . . 
(elimination of a sequence of the form ?,er or e,Zj), and 

. , . e;<, . . . -P. . . e i F ~ , F k .  . . 
or 

, . . &ek . . . -+ . . . F8e,Zfk . . . 
(insertion of a sequence of the form <,e, or e,Zj). For example, e,Foel, elFg3, e3Foe2F2el, 
e&e3Fzel, etc. describe the point B (see figure 4). 

We can divide the set of all sequences (4.3) into classes by putting together in the 
same class all the sequences that describe the same point. The set 31 can be identified as 
the set of all these classes. 

We associate to each sequence (4.3) the element (no, n,, n 2 ,  n3)  E Z4, where n,is the 
number of appearances of e, inside it minus the number of appearances of F i ,  for any 
i E {O, 1,2,3}. For example, (-1. l , O ,  1) corresponds to each of the sequences which 
describe the point B. 

We remark that we associate the same element to all the sequences which describe 
the same point and the associated elements (no, n,. n,, n,) belong to S. Thus, we have 
defined a bijection 

!p:31-+Ss. (4.4) 
This bijection depends on the choice of the point 0 E 31 and the indexation by 0, 1 ,2 ,  
3 of its four nearest points. We obtain in a similar way a bijection for any element 
(D, Do, D,, D D3) E SR5 such that Do, D,,  D2. D, are the four nearest points of D by 
setting e, = dL for any i E {O, 1,2,3). 

In particular, if we pass from the bijection corresponding to (0, &. A, ,  A,, A3) to 
one corresponding to (0.4, Az, A,, AI), (0, AI, A, ,  A3, A& (0, At, &, A,, A,) or 
(Ao, 0, A;, Ai, A;) b e e  figure 4) then the coordinates of an arbitrary point change 
accordingto the transfomationsA,,A2,A3,AUgiven by (3,5),respectively. In addition, 
we can pass to any other choice by composing these transformations. 

In mathematical terms, the set of all the bijections y :% +S defined above can be 
considered as an atlas of global maps for 3 whose changes of map belong to the 
representation of 0: in S. It allows us to add to the set % the 0;-invariant structure of S 
by using such a map, independent of the chosen map. 

Let VI :%-P Sand 1#~:31-4 be two maps. We define two mappings 

d:% x 31+N d(A, A') = d(Wi(A), Vi(A')) (4.5) 

N : % x 3 1 + N  N(A, A') = N(Vi(A), %(A')). (4.6) 
Since q2 0 V;' :S+ S belongs to 0; and d, N are 0;-invariant, it follows that 

d(Wt(A), VI@')) = ~ ( ( W Z  0 W;%Vi(A))> ("2 0 K 1 ) ( V ~ ( A ' ) )  

= d(Wz(A), 1/)dA')) 
andsimilarlyforN. Thismeansthatthedefinitionsofd, N:31 X %+ hareindependent 
of the chosen description Vi. 
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We shaU prove that the numbers d ( A ,  A‘)  and N ( A ,  A’) represent the minimum 
number of elementary segments (segments having two nearest structure points as end- 
points) that one must traverse to reach the point A’ on the diamond structure starting 
from A (we call it the intrinsic distance between A and A‘)  and respectively the number 
of paths having this length that connect these two points. Since d and N are 
Ol-invariant we can use the particular description in which W(A’) = (0, 0, 0,O). To 
describe the point A we can use a sequence (4.3) having the property that for any 
i E {O,  1,2,3} at most one of e,, F, appears inside it. Evidently, it contains 
In01 +ln , l+ lnZI  + In~ l=d(n ,o )componen t s ,wheren=(no ,n l ,n* ,n3 )=~(A)and  
o = ( O , O ,  0,O) = t)(A’). 

The number m of ‘bar’ components in such a sequence is the sum of the negative 
components of (no, n l ,  n2, n3) taken to opposite sign and that of ‘non-bar’ components 
is the sump of the positive components of (no, n , ,  nz, ns). We can pass from one such 
sequence to another by separate permutations of the ‘bar’components and of the ‘non- 
bar’components. But not all (-m)! .p! sequences thus obtained are distinct. For each 
sequence there are / n o / ! .  I f i l l !  I n Z l ! .  ln3 j !  permutations that leave it unchanged. 

The mappings d : 3 X 9? + N and N :  91 x 3 + N are difficult to describe classically. 
The point (x ,  y ,  I) E Z3 is a point of the diamond structure if and only if there exists 

A E BB such that 

(A, ( y  + z) /2  + A, (x + z)/2 + A, (x  + y) /2  + h)  E z4 

A + ( y  + z)/2 + A + (x + z) /Z  + A + (x  + y ) / 2  + A E {O; 1). 

(4.7) 

(4.8) 

and 

It follows that h E 72 and x ,  y ,  z are either all even or all odd. In the case x ,  y .  z even, 
(4.8) becomesx + y + z + 4A = 0 and hence ( x ,  y. z )  corresponds to 

( ( - x  - y - Z)/4, ( - X  + y + Z)/4, ( X  - y + Z)/4, ( X  + y - Z)/4) E s. 

In the case x ,  y ,  z odd we get x + y + z + 4h = 1 and hence (x ,  y ,  z) corresponds to 

( ( - x  - y - z + 1)/4, ( - x  + y + z + 1)/4, ( X  - y + z + 1)/4, ( X  + y - z + 1)/4) E S. 
The intrinsic distance 

d : 3  x N d(A, A‘) = In, - n; I 
i = O  

where (no, n,,  nz, n3) = W(A) and (nb, ni, n;, n;)  = W(A’), has the following expression 
in the classical description 

d ( ( x , y , ~ ) , ( d , y ’ , ~ ’ ) )  = i ( l - ~ - y - ~ + x ‘ + y ‘ + z ‘ I  + I - x + y + z + x ’ - y ’ - z ’ I  

+ Ix - y  + z - x ‘  + y ‘  - 2’1 + I x + y  - z - x ’  - y ’  + 2‘1) (4.9a) 

for x ,  x‘  both even and x ,  x‘ both odd 

d ( ( x , y , z ) , ( x ‘ , y ‘ , t ’ ) ) = 4 ( 1 - ~ - y - z + ~ ’ + y ‘ + z ’ - I I  

+ I -x  + y  + z + x‘ - y’ - 2 ’  - 11 + Ix - y + z - x’ + y ’  - 2’ - 11 
+ l x + y - z  - x ’  - y ‘  + z ‘  - 11) (4.96) 
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for x even and x' odd 

d((x,y, z) , (x ' , y ' , z ' ) )  =!(I-x - y  - z + 1 + X' + y ' +  z'I 
+ I-x + y + z + 1 + x' - y '  - 2'1 + Ix - y  + z t 1 - x' + y '  - 2'1 

+ Ix  + y - z + 1 - x '  - y' + 2'1) (4.Yc) 
forxoddandx'even.  

In a crystal having the structure of diamond we can assume that two atoms A and A' 
are bound to each other by means of other atoms along all minimal paths connecting 
them. The 'intensity'of this bond dependson the numbers d(A, A') and N(A,  A'), 

In a fixed description W :  91 + S, the points corresponding to 
SI = {(no, n,. n2, n3) E Slno + nl + n2 + n3 = 1) 

form a face-centred cubic lattice. The corresponding intrinsic distance is 
3 

d,:S, x SI -+ N di(n,n') = In, - n:l 
, =O 

and the number of minimal paths is given by the same formula as in the case of the 
diamond structure. 

5. A class of 0:-invariant operators 

We denote by 6: the field of complex numbers and for any z = x + iy E C we denote by 
i = x - iy its conjugate and by l z (  = ( ~ f ) " ~  its absolute value. Let I", z l r  z2, I?, . . . be 
a sequence of complex numbers. The series X;=" z, is called absolutely convergent if the 
series XTs0 1 . ~ ~ 1  is convergent. Let x: N + N be a bijective mapping. It is known [Y] that 
if the series Z;=O zi is absolutely convergent then the series z,,~) is also absolutely 
convergent and they have the same sum. 

Let zl : N + S, n2: N + S be two bijective mappings. We can obtain such a bijection, 
for example, by associating 0 to (O,O, 0.0) E S. 1. 2, 3 . 4  to the four elements n ES 
whichsatisfytheconditiond(n,o) = l ,thenumbers5,6,. . . ,16tothetwelveelements 
n E S which satisfy the condition d(n, o) = 2, etc. Let u : S +  C be a mapping. If 
ETao u(z , ( j ) )  is absolutely convergent then we say [9] that XnES u(n)  is absolutely 
summable and its sum is 

Sincez;' o n2: N + N is a bijection and XraO u ( z l ( j ) )  is absolutelyconvergent it follows 
that Z;=o u(z,((n;' 0 z2)( j ) ) ) ,  that isZ;=, u(zz ( j ) ) ,  isabsolutely convergent and 

Thus, the definition of X n E S  u(n) does not depend on the bijection zl: N + S we use to 
define it. 

We consider the space 

)u(n)~Zisabsolutelysummable 
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of all the mappings U : S - t  02 having the property that X n E S  [ u(n) I* is absolutely summ- 
able. The space 12(S)  has the structure of a Hilbert space [lo] given by 

U ]  + U2 : s + c (U, + u d n )  = ut(n) + U 2 b )  

a .u : s - r  c (a.  = a(u(n))  (5.3) 

(ut, U*) = c .I(fl) . U20 
"ES 

We obtain a unitary linear representation [ll] of 0; in 12(S) by associating to each 
g:S+ S, g E Ol, the transformation 

T, : P(S)  -+ P(S)  (T,(u))(n) = u(k-")). (5.4) 
Indeed, 

ITp,(Tg2(~))l(n) = (Tg2(u))[ki')(n)I u{(gi')[ki')(n)IJ 
= u[(gt Ogr)-'(n)l = [T,,Oai(u)l(n) 

for any n E S and 

for any g E 0;. U', u2 E 12(S) .  
To give a physical interpretation. we consider the case of an electron lying inside of 

a crystal having the structure of diamond. We assume that the only possible positions of 
the electron are in the proximity of an atom of the crystal. Let In)  be the wavefunction 
corresponding to the following case: the electron is in the proximity of the atom n E S. 
The general wavefunction is a superposition 

u ( f l ) .  In) 
" € 5  

and it  is square-integrable if and only if u E l * ( S ) .  
We consider the operator 

A : 12(S) + 12(S) (Au)(n) = 'c u(d(n,  n ' ) )  .U(.') (5.5) 
" 'ES 

for any mapping U :  N e  R such that the sum exists and Au E 12(S) for any U E lz (S) .  
The operators thus defined are 0:-invariant, that is, A = o A o T, for any g E 07,. 
Indeed, 

[ ( A  0 Tg)(u)l(n) = [A(T,(u))l(n) = u[d(n, n ' ) ]  . [T, (u)] (n ' )  
n'ES 

= 2 u[d(n, n')] . u[g- ' (n ' ) ]  

= 'c u[d(g-Yn),g- '(n')) l .  u[g-'(n')l 

n'ES 

Il'ES 



9294 N COtfQS 

= 2 o[d(g-l(n), n')] . u(n') = (Au)[g-'(n)] 

= [r,.(Au)l(n) = Ug O N u ) l ( n )  

"'ES 

for anyg E Oi, U E 12(S) and n E S. 
The operator A corresponding to U is a Hermitian operator if and only if 

for any U],  u2 E 12(S). 

n" = (no + E(n), nl, n2, n3) 

n' = (no. nl + e(n),  n2, n3) 
where 

The four nearest points of the point n = (no. n , ,  n2, n3) E S are (figure 5) 

n2 = (no, n, ,  n2 + ~ ( n ) ,  n3) 

n3 = (no, nl, n2, n3 + E(n))  
(5 .6)  

&(a) = ( - l )nn+n i+%+ni ,  (5.7) 

Let u:M+R be the mapping 0(0)=-4, u ( l ) = l ,  u ( j ) = O  for j > l  and 
Ad:12(S)+ I2 (S) ,  

3 

(5 .8)  

the corresponding operator. If k = [k,, k,, k,, k,] E P satisfies 

sin(ko t k ,  - k2 - k3) sin(ko - k ,  + kZ - k3) sin(ko - k, - k2 + k3)  = 0 (5.9) 
then the mapping u k : S +  @, uk(n)  = exp(i(k, n)) is an eigenfunction (it belongs to an 
extension of the space I'(S)) of the operator Adcorresponding to the eigenvalue 

E k  = 4( - 1 + cos(ko + kl - k2 - k3) CoS(k0 - k, + k2 - k3) 

x cos(k0 - ki -k2 + k3)]. (5.10) 

Indeed, 
3 3 

,=I1 " I # ,  ]=U 
(k, n )  = 3 2 k, . n, - 

and the equation Aduk = E, . uk is equivalent to 

exp[ie(n)(3k0 - k, - k, - k,)] + exp[ie(n)(-ko + 3k, - k2 - k3)] 

k, . n, = z (3kl - k,) . n, 

+ exp[ir(n)(-ko - k, + 3k2 - k3)] 
+ exp[iE(n)(-ko - k ,  - k, + 3k3)] = E + 4. 

For & E R we get 
cos(3ko - k, - k2 - k,) + cos(-ko + 3kl - k2 - k,) 

+ cos(-ko - ki + 3k2 - k3) + cos(-ko - kl - k2 + 3k3) = Ex + 4 
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and 

sin(3ko - k, - k, - k3) + sin(-k, + 3k1 - k2 - k,) 

+ sin(-k, - k, + 3k2 - k3) + sin(-k, - kl  - k2 + 3k3) = 0 

which are equivalent to (5.10) and (5.9). 

which is defined similarly to l z ( S ) ,  and the operator A,: r2(Z3) 
In the case of a Bravais lattice one considers [12] the space of Jacobi matrices 12(Z3),  

[ ' (E3) ,  

(h ,u) (m)  = [u(in') - u ( m ) ]  = -6u(m) + u(m') 
m.EZ3. " € 2 : .  

lm'-ml+ = 1 lm'-ml+=1 

where Im' - mi,  =E;=, Im; - mil. It iscalled the discrete Laplacian. We remark that 
it corresponds to the operator (5.8) considered in the case of the diamond structure. 

6. A class of 0:-invariant scalar fields 

A mapping f :P+@ is Td-invariant if and only if f[xo.xL.x2,x3] = f [ x , ~ ) , x , , ) ,  
X , ( ~ ) , X , ( ~ ) ]  for any U E &. Iff:  P+ @ is Td-invariant and if EnES f (e (n) (x  - n ) )  i s  
absolutely summable for any x E P (this occurs, for example, if there is r E (0, -) 
such that f [ x o , x l ,  x 2 ,  x3]  = 0 for any x = [xo,xI. x Z , x 3 ]  E P,  satisfying the condition 
( x , x )  > ?), then the mapping V : P +  @, V ( x )  = ZaEsf(&(n)(x - n ) )  is 0;-invariant. 
Indeed, for any j E {1,2,3} we get 

V(Aj(x)) = f(&(n)(Aj(x) - n ) )  = f(&(A,(n))(Aj(x) - A,(n))) 
" E S  "ES 

We have also 
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7. Conclusions 

A difficult problem may become a simpler one if an adequate description is used. The 
presented description seems to be useful in this sense. New 07, spaces such as S X P, 
P x P, etc, and new 07,-invariant mathematical objects useful in modelling some physical 
aspects can be obtained by starting from the 0; spaces and 0;-invariant objects con-  
sideredabove. Suchdevelopmentsare in progressand they will be the subject of another 
article. 
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